package com.rapidminer.operator.RatingPrediction;
import java.util.List;
import com.rapidminer.data.EntityMapping;
import com.rapidminer.data.IEntityMapping;
import com.rapidminer.data.IRatings;
import com.rapidminer.data.Ratings;
import com.rapidminer.example.Attribute;
import com.rapidminer.example.AttributeRole;
import com.rapidminer.example.Attributes;
import com.rapidminer.example.Example;
import com.rapidminer.example.ExampleSet;
import com.rapidminer.operator.Operator;
import com.rapidminer.operator.OperatorDescription;
import com.rapidminer.operator.OperatorException;
import com.rapidminer.operator.UserError;
import com.rapidminer.operator.ports.InputPort;
import com.rapidminer.operator.ports.OutputPort;
import com.rapidminer.operator.ports.metadata.ExampleSetPassThroughRule;
import com.rapidminer.operator.ports.metadata.ExampleSetPrecondition;
import com.rapidminer.operator.ports.metadata.GenerateNewMDRule;
import com.rapidminer.operator.ports.metadata.MetaData;
import com.rapidminer.operator.ports.metadata.SetRelation;
import com.rapidminer.parameter.ParameterType;
import com.rapidminer.parameter.ParameterTypeCategory;
import com.rapidminer.parameter.ParameterTypeDouble;
import com.rapidminer.parameter.ParameterTypeInt;
import com.rapidminer.tools.Ontology;
/**
* ItemKnn operator for Rating Prediction
*
* @see com.rapidminer.operator.RatingPrediction.ItemKnn
* @see com.rapidminer.operator.RatingPrediction.ItemKnnCosine
* @see com.rapidminer.operator.RatingPrediction.ItemKnnPearson
*
* @author Matej Mihelcic (Ru�er Bo�kovi� Institute)
*/
public class ItemKnn extends Operator {
public static final String PARAMETER_K = "k";
public static final String PARAMETER_Min="Min Rating";
public static final String PARAMETER_Range="Range";
public static final String PARAMETER_CORRELATION_MODE="Correlation mode";
public static final String[] CORRELATION_MODES = { "pearson" , "cosine" };
public static final int CORRELATION_MODE_COSINE = 1;
public static final int CORRELATION_MODE_PEARSON = 0;
public static final String PARAMETER_REGU="reg_u";
public static final String PARAMETER_REGI="reg_i";
public static final String PARAMETER_schrink="schrinkage";
private InputPort exampleSetInput = getInputPorts().createPort("example set");
private OutputPort exampleSetOutput1 = getOutputPorts().createPort("Model");
private OutputPort exampleSetOutput = getOutputPorts().createPort("example set");
public List<ParameterType> getParameterTypes() {
List<ParameterType> types = super.getParameterTypes();
types.add(new ParameterTypeInt(PARAMETER_K, "The used number of nearest neighbors. Range: integer; 1-+?; default: 80", 1, Integer.MAX_VALUE, 80, false));
types.add(new ParameterTypeInt(PARAMETER_Min, "Value of minimal rating value. Range: integer; 0-+?; default: 1", 0, Integer.MAX_VALUE, 1, false));
types.add(new ParameterTypeInt(PARAMETER_Range, "Range of possible rating values. Range: integer; 1-+?; default: 4 ; Max Rating=Min Rating+Range;", 1, Integer.MAX_VALUE, 4, false));
types.add(new ParameterTypeDouble(PARAMETER_REGU, "Regularization parameter for user biases. Range: double; 0-+?; default: 10 ;", 0, Double.MAX_VALUE, 10, true));
types.add(new ParameterTypeDouble(PARAMETER_REGI, "Regularization parameter for item biases. Range: double; 0-+?; default: 5 ;", 0, Double.MAX_VALUE, 5, true));
types.add(new ParameterTypeDouble(PARAMETER_schrink, "Schrinkage regularization parameter. Range: float; 0-+?; default: 10 ; used only in Pearson mode", 0, Float.MAX_VALUE, 10, true));
ParameterType type = new ParameterTypeCategory(PARAMETER_CORRELATION_MODE, "Tipe of correlation used to calculate prediction.", CORRELATION_MODES, CORRELATION_MODE_COSINE);
type.setExpert(false);
types.add(type);
return types;
}
/**
* Constructor
*/
public ItemKnn(OperatorDescription description) {
super(description);
exampleSetInput.addPrecondition(new ExampleSetPrecondition(exampleSetInput, "user identification", Ontology.ATTRIBUTE_VALUE));
exampleSetInput.addPrecondition(new ExampleSetPrecondition(exampleSetInput, "item identification", Ontology.ATTRIBUTE_VALUE));
exampleSetInput.addPrecondition(new ExampleSetPrecondition(exampleSetInput, "label", Ontology.ATTRIBUTE_VALUE));
getTransformer().addRule(new ExampleSetPassThroughRule(exampleSetInput, exampleSetOutput, SetRelation.EQUAL) {
});
getTransformer().addRule(new GenerateNewMDRule(exampleSetOutput1, new MetaData(RatingPredictor.class)) {
});
}
@Override
public void doWork() throws OperatorException {
ExampleSet exampleSet = exampleSetInput.getData();
IEntityMapping user_mapping=new EntityMapping();
IEntityMapping item_mapping=new EntityMapping();
IRatings training_data=new Ratings();
if (exampleSet.getAttributes().getSpecial("user identification") == null) {
throw new UserError(this,105);
}
if (exampleSet.getAttributes().getSpecial("item identification") == null) {
throw new UserError(this, 105);
}
if (exampleSet.getAttributes().getLabel() == null) {
throw new UserError(this, 105);
}
Attributes Att = exampleSet.getAttributes();
AttributeRole ur=Att.getRole("user identification");
Attribute u=ur.getAttribute();
AttributeRole ir=Att.getRole("item identification");
Attribute i=ir.getAttribute();
Attribute ui=Att.getLabel();
for (Example example : exampleSet) {
double j=example.getValue(u);
int uid=user_mapping.ToInternalID((int) j);
j=example.getValue(i);
int iid=item_mapping.ToInternalID((int) j);
double r=example.getValue(ui);
training_data.Add(uid, iid, r);
}
System.out.println(training_data.GetMaxItemID()+" "+training_data.GetMaxUserID());
int correlationMode = getParameterAsInt("Correlation mode");
_itemKnn recommendAlg;
if(correlationMode==0){
recommendAlg=new ItemKnnPearson();
double schrinkage=getParameterAsDouble("schrinkage");
recommendAlg.setSchrinkage((float)schrinkage);
}
else recommendAlg=new ItemKnnCosine();
recommendAlg.user_mapping=user_mapping;
recommendAlg.item_mapping=item_mapping;
int K=getParameterAsInt("k");
double regU=getParameterAsDouble("reg_u");
recommendAlg.RegU=regU;
double regI=getParameterAsDouble("reg_i");
recommendAlg.RegI=regI;
recommendAlg.SetK(K);
recommendAlg.SetMinRating(getParameterAsInt("Min Rating"));
recommendAlg.SetMaxRating(recommendAlg.GetMinRating()+getParameterAsInt("Range"));
recommendAlg.SetRatings(training_data);
recommendAlg.Train();
exampleSetOutput.deliver(exampleSet);
exampleSetOutput1.deliver(recommendAlg);
}
}