Package com.rapidminer.operator.RatingPrediction

Source Code of com.rapidminer.operator.RatingPrediction.ItemKnn

package com.rapidminer.operator.RatingPrediction;

import java.util.List;

import com.rapidminer.data.EntityMapping;
import com.rapidminer.data.IEntityMapping;
import com.rapidminer.data.IRatings;
import com.rapidminer.data.Ratings;
import com.rapidminer.example.Attribute;
import com.rapidminer.example.AttributeRole;
import com.rapidminer.example.Attributes;
import com.rapidminer.example.Example;
import com.rapidminer.example.ExampleSet;
import com.rapidminer.operator.Operator;
import com.rapidminer.operator.OperatorDescription;
import com.rapidminer.operator.OperatorException;
import com.rapidminer.operator.UserError;
import com.rapidminer.operator.ports.InputPort;
import com.rapidminer.operator.ports.OutputPort;
import com.rapidminer.operator.ports.metadata.ExampleSetPassThroughRule;
import com.rapidminer.operator.ports.metadata.ExampleSetPrecondition;
import com.rapidminer.operator.ports.metadata.GenerateNewMDRule;
import com.rapidminer.operator.ports.metadata.MetaData;
import com.rapidminer.operator.ports.metadata.SetRelation;
import com.rapidminer.parameter.ParameterType;
import com.rapidminer.parameter.ParameterTypeCategory;
import com.rapidminer.parameter.ParameterTypeDouble;
import com.rapidminer.parameter.ParameterTypeInt;
import com.rapidminer.tools.Ontology;

/**
* ItemKnn operator for Rating Prediction
*
* @see com.rapidminer.operator.RatingPrediction.ItemKnn
* @see com.rapidminer.operator.RatingPrediction.ItemKnnCosine
* @see com.rapidminer.operator.RatingPrediction.ItemKnnPearson
*
* @author Matej Mihelcic (Ru�er Bo�kovi� Institute)
*/

public class ItemKnn extends Operator {

  public static final String PARAMETER_K = "k";
  public static final String PARAMETER_Min="Min Rating";
  public static final String PARAMETER_Range="Range";
  public static final String PARAMETER_CORRELATION_MODE="Correlation mode";
  public static final String[] CORRELATION_MODES = { "pearson" , "cosine" };
  public static final int CORRELATION_MODE_COSINE = 1;
  public static final int CORRELATION_MODE_PEARSON = 0;
  public static final String PARAMETER_REGU="reg_u";
  public static final String PARAMETER_REGI="reg_i";
  public static final String PARAMETER_schrink="schrinkage";
 
  private InputPort exampleSetInput = getInputPorts().createPort("example set");
  private OutputPort exampleSetOutput1 = getOutputPorts().createPort("Model");
  private OutputPort exampleSetOutput = getOutputPorts().createPort("example set");

 
  public List<ParameterType> getParameterTypes() {
     List<ParameterType> types = super.getParameterTypes();
     types.add(new ParameterTypeInt(PARAMETER_K, "The used number of nearest neighbors. Range: integer; 1-+?; default: 80", 1, Integer.MAX_VALUE, 80, false));
     types.add(new ParameterTypeInt(PARAMETER_Min, "Value of minimal rating value. Range: integer; 0-+?; default: 1", 0, Integer.MAX_VALUE, 1, false));
     types.add(new ParameterTypeInt(PARAMETER_Range, "Range of possible rating values.  Range: integer; 1-+?; default: 4 ; Max Rating=Min Rating+Range;", 1, Integer.MAX_VALUE, 4, false));
     types.add(new ParameterTypeDouble(PARAMETER_REGU, "Regularization parameter for user biases.  Range: double; 0-+?; default: 10 ;", 0, Double.MAX_VALUE, 10, true));
     types.add(new ParameterTypeDouble(PARAMETER_REGI, "Regularization parameter for item biases.  Range: double; 0-+?; default: 5 ;", 0, Double.MAX_VALUE, 5, true));
     types.add(new ParameterTypeDouble(PARAMETER_schrink, "Schrinkage regularization parameter.  Range: float; 0-+?; default: 10 ; used only in Pearson mode", 0, Float.MAX_VALUE, 10, true));
     ParameterType type = new ParameterTypeCategory(PARAMETER_CORRELATION_MODE, "Tipe of correlation used to calculate prediction.", CORRELATION_MODES, CORRELATION_MODE_COSINE);
      type.setExpert(false);
      types.add(type);
     return types;
     }
 
  /**
   * Constructor
   */
  public ItemKnn(OperatorDescription description) {
    super(description);

    exampleSetInput.addPrecondition(new ExampleSetPrecondition(exampleSetInput, "user identification", Ontology.ATTRIBUTE_VALUE));
    exampleSetInput.addPrecondition(new ExampleSetPrecondition(exampleSetInput, "item identification", Ontology.ATTRIBUTE_VALUE));
    exampleSetInput.addPrecondition(new ExampleSetPrecondition(exampleSetInput, "label", Ontology.ATTRIBUTE_VALUE));
   
    getTransformer().addRule(new ExampleSetPassThroughRule(exampleSetInput, exampleSetOutput, SetRelation.EQUAL) {
    });
   
    getTransformer().addRule(new GenerateNewMDRule(exampleSetOutput1, new MetaData(RatingPredictor.class)) {
            
     });
  }

  @Override
  public void doWork() throws OperatorException {
   
    ExampleSet exampleSet = exampleSetInput.getData();
       
        IEntityMapping user_mapping=new EntityMapping();
         IEntityMapping item_mapping=new EntityMapping();
        IRatings training_data=new Ratings();
       
       if (exampleSet.getAttributes().getSpecial("user identification") == null) {
                throw new UserError(this,105);
            }
       
       if (exampleSet.getAttributes().getSpecial("item identification") == null) {
                throw new UserError(this, 105);
            }
      
       if (exampleSet.getAttributes().getLabel() == null) {
                throw new UserError(this, 105);
            }
      
       Attributes Att = exampleSet.getAttributes();
       AttributeRole ur=Att.getRole("user identification");
       Attribute u=ur.getAttribute();
       AttributeRole ir=Att.getRole("item identification");
       Attribute i=ir.getAttribute();
       Attribute ui=Att.getLabel();
       
        for (Example example : exampleSet) {
         
          double j=example.getValue(u);
          int uid=user_mapping.ToInternalID((int) j);

          j=example.getValue(i);
          int iid=item_mapping.ToInternalID((int) j);

          double r=example.getValue(ui);
          training_data.Add(uid, iid, r);
         
        }
       
     
         System.out.println(training_data.GetMaxItemID()+" "+training_data.GetMaxUserID());
       
        
         int correlationMode = getParameterAsInt("Correlation mode");
         _itemKnn recommendAlg;
        
         if(correlationMode==0){
           recommendAlg=new ItemKnnPearson();
           double schrinkage=getParameterAsDouble("schrinkage");
           recommendAlg.setSchrinkage((float)schrinkage);
         }
         else recommendAlg=new ItemKnnCosine();
       
         recommendAlg.user_mapping=user_mapping;
         recommendAlg.item_mapping=item_mapping;
         int K=getParameterAsInt("k");
         double regU=getParameterAsDouble("reg_u");
         recommendAlg.RegU=regU;
         double regI=getParameterAsDouble("reg_i");
         recommendAlg.RegI=regI;
         recommendAlg.SetK(K);
         recommendAlg.SetMinRating(getParameterAsInt("Min Rating"));
         recommendAlg.SetMaxRating(recommendAlg.GetMinRating()+getParameterAsInt("Range"));
        
         recommendAlg.SetRatings(training_data);

         recommendAlg.Train();
        
        exampleSetOutput.deliver(exampleSet);
        exampleSetOutput1.deliver(recommendAlg);
        }
  }
TOP

Related Classes of com.rapidminer.operator.RatingPrediction.ItemKnn

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.